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Figure 1. Software flowchart of the CAM-CM algorithm. 
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ABSTRACT 
Summary: In vivo dynamic contrast-enhanced imaging tools provide 
noninvasive methods for analyzing various functional changes asso-
ciated with disease initiation, progression, and responses to therapy. 
The quantitative application of these tools has been hindered by its 
inability to accurately resolve and characterize targeted tissues due 
to spatially-mixed tissue heterogeneity. CAM-CM (Convex Analysis 
of Mixtures - Compartment Modeling) signal deconvolution tool has 
been developed to automatically identify pure-volume pixels located 
at the corners of the clustered pixel time series scatter simplex and 
subsequently estimate tissue-specific pharmacokinetic parameters. 
CAM-CM can dissect complex tissues into regions with differential 
tracer kinetics at pixel-wise resolution and provide a systems biology 
tool for defining imaging signatures predictive of phenotypes. 
Availability: The MATLAB source code can be downloaded at the 
authors’ website www.cbil.ece.vt.edu/software.htm  
Contact: yuewang@vt.edu 

1 INTRODUCTION  
In vivo dynamic contrast-enhanced imaging tools provide noninva-
sive methods for analyzing various functional changes associated 
with disease initiation, progression, and responses to therapy 
(McDonald and Choyke, 2003). Typical modalities include dy-
namic contrast-enhanced magnetic resonance imaging (DCE-MRI) 
(Costouros, et al., 2002), dynamic contrast enhanced optical imag-
ing (Hillman, et al., 2007), positron emission tomography (Zhou, et 
al., 1997), and spectroscopic computed tomography (Anderson, et 
al., 2010). These tools exploit the dynamics of contrast accumula-
tion and washout to produce functionally relevant images of vascu-
lar perfusion and permeability, metabolism, or gene expression, 
and can potentially test novel hypotheses and predict drug efficacy.      

However, due to spatially-mixed tissue heterogeneity, the pre-
cise imaging-based phenotyping by these tools has been hindered 
by its inability to accurately resolve and characterize targeted func-
tional tissue compartments (Hillman and Moore, 2007). This indis-
tinction between contributions of different tissues to the mixed 
tracer signals could significantly confound subsequent pharma-
cokinetics compartmental modeling (CM) (Zhou, et al., 1997) and 
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affect the accuracy of genotype-phenotype association studies 
(Costouros, et al., 2002; Segal, et al., 2007).  

We developed convex analysis of mixtures – compartment 
modeling (CAM-CM) signal deconvolution tool that enables geo-
metrically-principled, unsupervised, and accurate characterization 
and delineation of major functional tissue structures from dynamic 
contrast-enhanced imaging data, not only dissecting complex tissue 
into regions with differential tracer kinetics at pixel-wise resolution 
but also substantially improving tissue-specific pharmacokinetic 

parameter estimation (Wang, et al., 2010). CAM-CM is supported 
by a well-grounded mathematical framework, and combines the 
advantages of multivariate clustering, convex geometry analysis, 
and compartmental modeling. The algorithm possesses a novel, 
powerful feature allowing pure-volume pixels to be readily identi-
fied from the measured pixel time series, without any knowledge 
of the associated compartmental pharmacokinetics, leading to a 
completely unsupervised approach. We provide CAM-CM soft-
ware as an open-source standalone MATLAB application.  

2 DESCRIPTION 
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Figure 2. Output of CAM-CM software on biomedical case studies (see 
supplementary information for more detailed discussions). 

2.1 Method and Software  
Under the framework of compartment modeling in dynamic contrast-
enhanced imaging studies, the spatial-temporal signals x(i,t) of tracer con-
centration at pixel i can be expressed as a non-negative linear combination 
of the latent tissue-specific compartmental time activity curves aj(t), 
weighted by the relative tissue type proportions Kj(i) at that pixel: x(i,t) = 
at1(t)K1(i) + … + aj(t)Kj(i) + … + aJ(t)KJ(i), where J is the number of func-
tional tissue compartments (Hillman, et al., 2007). This falls neatly within 
the definition of a convex set:  
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where aj is the vector notation of aj(t) over time . We have shown that the 
corner points of the pixel time series convex hull H(X) correspond to the 
pure-volume pixels for each tissue compartments (Wang, et al., 2010).      

The flowchart of CAM-CM algorithm is given in Fig. 1. The three core 
components of CAM-CM software include: (1) initialization-free multi-
variate clustering of pixel time series into an optimum number of represen-
tative and robust clusters using affinity propagation clustering and expecta-
tion-maximization mixture model fitting (Frey and Dueck, 2007); (2) con-
vex analysis of mixtures that automatically identifies the pure-volume pixel 
clusters geometrically located at the corners of the clustered pixel time-
series scatter simplex via minimum-error-margin convex-hull-to-data fit-
ting (Wang, et al., 2010); and (3) compartment modeling that estimates 
tissue-specific pharmacokinetic parameters using only pure-volume pixel 
time series. The CAM-CM software is implemented in MATLAB, and runs 
successfully on both Microsoft Windows and Linux platforms. 

The CAM-CM software takes input the .mat data files that record the 
pixel time series of dynamic contrast-enhanced images in matrices. Each 
row corresponds to a time frame and each column corresponds to a pixel. 
Running CAM-CM software is automatic and convenient, with only two 
user-controlled parameters: the number of tissue types J and the sampling 
time interval between two consecutive dynamic image frames. Results of 
CAM-CM are provided to the users via a multiplatform graphical summary 
that includes compartment time activity curves, convexity-preserved clus-
tered scatter simplex, and dissected and composite compartment parametric 
images (see Fig. 2). The displays are visually simple to interpret, yet still 
convey considerable mathematical and biological insights.  

2.2 Biomedical Case studies  

CAM-CM has been tested on real dynamic contrast-enhanced imaging data. 
Using DCE-MRI dataset of an advanced breast cancer case (McDonald and 
Choyke, 2003), CAM-CM analysis reveals two biologically interpretable 
vascular compartments with distinct kinetic patterns: fast clearance in pe-
ripheral “rim” and slow clearance in inner “core” (Fig. 2a-c) which other-
wise could not be seen if tissue heterogeneity (84% in this case) was not 
taken into account, plausibly consistent with the previously reported het-
erogeneity within tumors (Costouros, et al., 2002). Since angiogenesis is 
essential to tumor development, it has been widely observed that active 
angiogenesis in advanced breast tumors often occurs in the peripheral “rim” 
with co-occurrence of inner-core hypoxia, due to the defective endothelial 
barrier function and outgrowth blood supply (McDonald and Choyke, 
2003). 

 In another application to dynamic fluorescence molecular imaging data 
acquired on a mouse after bolus injection of indocyanine green dye (Hill-
man and Moore, 2007), CAM-CM provides physiologically interpretable 
biodistribution dynamics of the major organs. Ten fluorescence time cours-
es (Fig. 2d) show distinct patterns of circulating, accumulating, or metabo-
lizing the dye in different organs, which agree with expected physiological 
trends, such as late uptake by adipose tissue and fast clearance from the 
brain region. The merged and color-coded maps of these dissected tissue 
compartments constitute anatomical structures of the mouse that agree well 
with a digital anatomical mouse atlas, allowing the longitudinal identifica-
tion of the internal organs (Fig. 2e) (Hillman and Moore, 2007).  

Detailed descriptions on method, simulation-based validation, and more 
biomedical case studies are included in the supplementary information. 

3 DISCUSSION 
CAM-CM spatial-temporal analysis can be very effective at reveal-
ing multi-compartment structure within dynamic contrast-
enhanced imaging data of complex tissues, estimating tissue-
specific kinetic parameter values, and characterizing the roles of 
different functional tissue compartments. We would expect the 
CAM-CM method, with publicly available open-source software 
package, to be a very useful tool for the exploratory analysis of 
dynamic functional imaging data in many research and clinical 
applications. We plan to develop and deliver future versions of the 
software written in both R and Java languages.   
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